Analysis effecti scelerisque magni circuitus frequentiae PCB

Cum alta frequentia/proin radio frequency signum in the pascitur PCB circuitus, quod dispendium per ipsum et circa circuentem materiam generabit inevitabiliter quantitatem caloris. Quanto igitur maior est deminutio, tanto superior virtus transiens per materiam PCB, et maior calor generatur. Cum temperatura circuli operativam excedit valorem aestimatum, potest circuitus aliquas difficultates facere. Exempli causa, typica parametri MOT operativae, quae in PCBs notissima est, maximum temperamentum operans est. Cum temperatura operativa MOT excedit, effectio et commendatio circuli PCB imminebit. Per compositionem electromagneticorum exemplaria et mensuras experimentales, intellegentes proprietates RF proin PCBs scelerisque iuvare possunt vitare ambitus perficiendi degradationem et fidem degradationem ab calidis temperaturis causatam.

Intellectus quomodo insertio detrimentum in rebus circa materias adiuvat ut melius describatur factores principales pertinentes ad thermas perficiendas ambitus magni-frequency PCB. Hic articulus microstrip tradendi lineam circuitionis accipiet in exemplum ut de mercatura mercatura quae ad scelerisque obeundos ambitus referatur. In microstrip ambitu cum structura PCB duplex postesque, damna includunt damnum dielectricum, damnum conductor, damnum radiorum, et damnum lacus. Discrimen inter partium dispendium magna est. Paucis exceptis, lacus amissio frequentiae PCB ambitus summus plerumque est humilis. In hoc articulo, cum pretii lacus iacturae valde gravis sit, in tempore negligitur.

Radialis damnum

Radiation loss depends on many circuit parameters such as operating frequency, circuit substrate thickness, PCB dielectric constant (relative dielectric constant or εr) and design plan. As far as design schemes are concerned, radiation loss often stems from poor impedance transformation in the circuit or electromagnetic waves in the circuit. The difference in transmission. Circuit impedance transformation area usually includes signal feed-in area, step impedance point, stub and matching network. Reasonable circuit design can realize smooth impedance transformation, thereby reducing the radiation loss of the circuit. Of course, it should be realized that there is the possibility of impedance mismatch leading to radiation loss at any interface of the circuit. From the point of view of operating frequency, usually the higher the frequency, the greater the radiation loss of the circuit.

Parametri ambitus materiae ad iacturam radiorum pertinentium sunt maxime dielectricae constantes et materiae crassitudinis PCB. Quo densior circuitio subiecta est, eo maior possibilitas radiorum damnum causandi; inferiorem εr materiae PCB, maiorem radiorum circuli iacturam. Comprehensive pensando notas materiales, usus tenuium ambitus subiectorum adhiberi potest ut via ad offset radiorum detrimentum per humilitatem εr circa materias. Influentia circuitionis substrata crassitudine et εr in ambitu radiorum dispendii est, quia functionis frequentiae-dependens est. Cum crassitudo circuitionis subiectae non excedit viginti milia et frequentiam operantem minor est quam 20GHz, radiorum ambitus iactura nimis est infima. Cum pleraque in ambitu sculpturae et mensurae frequentiae in hoc articulo inferiores sint quam 20GHz, disputatio in hoc articulo ignorare potest influxum radiorum in circuitu calefactionis detrimentum.

Post detrimentum radiorum neglectis infra 20GHz, immissio amissio lineae transmissionis microstrip circa ambitum maxime duas includit partes: damnum dielectricum et damnum conductor. Proportio utriusque ambitus maxime pendet a crassitudine distent. Tenuior enim subiecta est, conductor damnum principale est. Multis de causis, plerumque difficile est damnum conductor accurate praedicere. Exempli gratia, asperitas superficies conductoris magnam vim habet in tradendis notis electromagneticis fluctibus. Asperitas folii aeris superficies electromagneticam undam propagationem constantem circa microstrip ambitum non solum mutabit, sed etiam gyrationis detrimentum conductor augebit. Ob cutem effectus, influentia aeris foil asperitas in conductor damnum est etiam frequentia-dependens. Figura 1 comparat demissionem amissionem 50 ohm microstrip transmissionis gyrorum in diversis crassitudinibus PCB fundatis, quae sunt 6.6 mils et 10 mils, respective.

The simulation results are obtained using Rogers Corporation’s MWI-2010 microwave impedance calculation software. The MWI-2010 software quotes the analytical equations in the classic papers in the field of microstrip line modeling. The test data in Figure 1 is obtained by the differential length measurement method of a vector network analyzer. It can be seen from Fig. 1 that the simulation results of the total loss curve are basically consistent with the measured results. It can be seen from the figure that the conductor loss of the thinner circuit (the curve on the left corresponds to a thickness of 6.6 mil) is the main component of the total insertion loss. As the circuit thickness increases (the thickness corresponding to the curve on the right is 10mil), the dielectric loss and the conductor loss tend to approach, and the two together constitute the total insertion loss.

The circuit material parameters used in the simulation model and the actual circuit are: dielectric constant 3.66, loss factor 0.0037, and copper conductor surface roughness 2.8 um RMS. When the surface roughness of the copper foil under the same circuit material is reduced, the conductor loss of the 6.6 mil and 10 mil circuits in Figure 1 will be significantly reduced; however, the effect is not obvious for the 20 mil circuit. Figure 2 shows the test results of two circuit materials with different roughness, namely Rogers RO4350B™ standard circuit material with high roughness and Rogers RO4350B LoPro™ circuit material with low roughness.

For thinner substrates, the use of smooth copper foil can significantly reduce the insertion loss. For the 6.6mil substrate, the insertion loss is reduced by 0.3 dB due to the use of smooth copper foil at 20GHz; the 10mil substrate is reduced by 0.22 dB at 20GHz; and the 20mil substrate, the insertion loss is only reduced by 0.11 dB.

This means that when the circuit is fed with a certain amount of RF microwave power, the thinner the circuit will generate more heat. When comprehensively weighing the issue of circuit heating, on the one hand, a thinner circuit generates more heat than a thick circuit at high power levels, but on the other hand, a thinner circuit can obtain more effective heat flow through the heat sink. Keep the temperature relatively low.

Ad solvendum problema calefactionis circuitionis, ratio tenuium circuii debet habere sequentes notas: humilis damnum factor in materia circa materiam, superficies tenuis aeris levis, humilis εr et princeps scelerisque conductivity. Comparari cum materia circuii altae εr, conductor latitudo eiusdem impedimenti sub conditione minoris εr consecuta esse potest maior, quae commodius conductor detrimentum ambitus minuere potest. Ex prospectu circumductionis caloris dissipationis, licet summa frequentia PCB ambitu subiecta habeat conductivity pauperrimus scelerisque respectu conductorum, scelerisque conductivity ambitus materiarum adhuc parametri magni momenti est.

Multum disputationum de scelerisque conductivity ambitus subiectorum in prioribus articulis elaboratae sunt, et hic articulus nonnullas eventus et informationes ex articulis superioribus adhibebit. Exempli gratia, sequentem aequationem et Figuram 3 adiuvant intelligere factores relatas ad materias ambitus PCB perficiendas scelerisque. In aequatione, k est conductivity scelerisque (W/m/K), A est area, TH est caliditas fontis calidi, TC est caliditas fontis frigidi, L est distantia inter fontem et calorem. frigidum fontem.