Whakaterehia me te whakapai ake i nga tikanga waea PCB

PCB ka whakapai haere tonu nga tikanga waea waea, ka taea e nga tikanga waea waea ngawari te whakaiti i te roa o te waea me te whakawatea i te nuinga atu o te waahi PCB. Ko nga waea waea PCB tikanga noa he mea here na nga hononga waea tuturu me te kore o nga waea koki noa. Ko te tango i enei aukati ka tino pai ake te kounga o nga waea waea.

ipcb

Let’s start with some terminology. Ka whakatauhia e maatau nga waea waea Angle taapiri hei waea waea ma te whakamahi i nga waahanga Koki taapiri me nga radian. He momo waea waea waea tera, engari kaore i te whaainga ki te whakamahi noa i te 90 tohu me te 45 tohu tohu raina Angle. Topological wiring is wire wiring that does not adhere to grids and coordinates and does not use regular or irregular grids like shape-based wiring. Me maatau te korero ko te waea waea ngohengohe hei waea waea kaore he taapiri kia taea ai te whakaheke i te waea wa-roa ki te whakatutuki i nga waahanga e whai ake nei. Ko nga kopere mai i nga aukati me o raatau taapiri noa e whakamahia ana hei hanga i te raina. (Obstacles include pins, copper foil, forbidden areas, holes and other objects) part of the circuit of two PCB models. Ko nga waea matomato me te whero ka rere i runga i nga papa rereke o te tauira PCB. The blue circles are the perforations. The red element is highlighted. There are also some red round pins. Use only line segments and models with an Angle of 90 degrees between them. Ko te Whakaahua 1B he tauira PCB e whakamahi ana i nga kopere me nga kokonga taapiri. Wiring at any Angle may seem strange, but it does have many advantages. The way it is wired is very similar to how engineers wired it by hand half a century ago. Ka whakaatuhia he PCB pono i hangaia i te 1972 e tetahi kamupene Amerika ko Digibarn te ingoa mo te waea waea katoa. This is a PCB board based on Intel8008 computer. Ko nga waea waea Angle kore e whakaatuhia i te Whakaahua 2 he rite tonu. He aha i whakamahia ai e raatau nga waea waea Angle kore? Na te mea he nui nga painga o tenei momo waea waea. Arbitrary Angle wiring has many advantages. Tuatahi, ko te kore e whakamahi i nga koki i waenga i nga waahanga raina ka penapena i te waahi PCB (ka nui ake te waahi o nga polygons i nga tangaroa). Traditional automatic cablers can place only three wires between adjacent components (see left and center in Figure 3). Heoi, ki te waea waea i tetahi Koki, he nui te waahi hei taapiri i nga waea e 4 i runga i te huarahi kotahi me te kore e takahi i te ture arowhai hoahoa (DRC). Whakaarohia he maramara aratau pai ta maatau me te hono ki nga titi maramara ki etahi atu e rua. Using only 90 degrees takes up a lot of space. Ma te whakamahi noa i nga waea Angle Angle ka taea te whakaiti i te tawhiti i waenga i te maramara me etahi atu titi, me te whakaiti i te tapuwae. In this case, the area was reduced from 30 square centimeters to 23 square centimeters. Rotating the chip at any Angle can also provide better results. In this case, the area was reduced from 23 square centimeters to 10 square centimeters. It shows a real PCB. Arbitrary Angle wiring with rotating chip function is the only wiring method for this circuit board. Ehara tenei i te kaupapa noa, engari he otinga whaihua (i etahi wa ko te otinga anake). Shows an example of a simple PCB. Ko nga hua o te Topler cabler, ko nga hua o te cabler aunoa i runga i te ahua tino pai ko nga whakaahua o te PCB tuuturu. An automatic cabler based on optimal shape cannot do this because the components are rotated at arbitrary angles. Me nui ake to rohe, ana ki te kore e huri i nga waahanga, me whakanui te taputapu. Layout performance would be greatly improved without parallel segments, which are often a source of crosstalk. The level of crosstalk increases linearly as the length of parallel wires increases. As the spacing between parallel wires increases, crosstalk decreases quadratic. Let’s set the level of crosstalk produced by two parallel 1mm wires spaced d to e. Mena he Koki kei waenga i nga waahanga waea, na ka piki ake tenei Koki, ka heke te taumata o te whiti. The crosstalk does not depend on the length of the wire, but only on the Angle value: where α represents the Angle between the wire segments. Whakaarohia nga tikanga waea e toru e whai ake nei. On the left side of Figure 8 (90 degree layout), there is the maximum wire length and the maximum emi value due to parallel line segments. In the middle of Figure 8 (45 degree layout), the wire length and emi values are reduced. On the right-hand side (at any Angle), the wire length is shortest and there are no parallel wire segments, so the interference value is negligible. So arbitrary Angle wiring helps to reduce the total wire length and significantly reduce electromagnetic interference. You also remember the effect on signal delay (conductors should not be parallel and should not be perpendicular to the PCB fiberglass). Advantages of flexible wiring Manual and automatic movement of components does not destroy the wiring in flexible wiring. Ka tatau tonu e te kaitao i te ahua pai o te waea waea (me te aro atu ki te whakawera haumaru e tika ana). Na reira ka taea e te taapiri ngawari te whakaiti i te waa e hiahiatia ana hei whakatika i te kaupapa, pai te tautoko i nga mahi maha kia tutuki nga herenga. E whakaatu ana tenei i te hoahoa PCB e neke ana i nga rua me nga peka peka. I te wa o te nekehanga aunoa, ko nga peka peka waea me nga poka-poka ka whakarerekehia ki te waahi pai. In most computer-aided design (CAD) systems, the wiring interconnection problem is reduced to the problem of sequentially finding paths between pairs of points in a maze of pads, forbidden areas, and laid wires. Ka kitea he ara, ka pumau ka waiho hei waahanga o te maze. Ko te ngoikoretanga o te waea hiko raupapa ko te hua waea pea ka ti’aturi ki te ota waea. Mena kei tawhiti tonu te kounga o te taha ki runga rawa, ko te raru o te “piri” kei nga rohe iti o te rohe. But no matter which wire you rewire, it’s not going to improve the quality of the wiring. This is a serious problem in all CAD systems using sequential optimization. This is where the bending elimination process is useful. Ko te piko waea e tohu ana i te ahuatanga o te waea i tetahi whatunga me hikoi haere tetahi mea i runga i tetahi atu whatunga kia uru ki tetahi mea. Rewiring a wire will not correct this. He tauira o te piko e whakaatuhia ana. A lit red wire travels around a pin in the other network, and an unlit red wire connects to this pin. Ka whakaatuhia nga hua tukatuka aunoa. In the second case (on another layer), a lighted green wire is automatically rewired by changing the wiring layer (from green to red). Eliminate wire bending by automatically optimizing wire shape (approximate arcs with line segments just to show any Angle examples without arcs). (top) original design, (bottom) after eliminating bending design. Ka whakaatuhia nga waea piko whero. I roto i te rakau Steiner, me hono nga raina katoa hei waahanga ki nga poutū (pito mutunga me nga taapiri). I te tihi o ia taurangi hou, e toru nga waahanga me hono me kaua e neke atu i te toru nga waahanga me mutu. The Angle between the line segments that converge to the vertex shall not be less than 120 degrees. Ehara i te tino uaua ki te hanga Steiner me enei rawa here, engari kaore i te iti. Gray Steiner trees are not optimal, but black Steiner trees are. I roto i te hoahoa whakawhiti korero whaihua, me whai whakaaro nga momo momo aukati. Ka aukatihia e ratau te kaha ki te hanga rakau roha iti nei ma te whakamahi i nga hātepe e rua me nga rakau Steiner ma te whakamahi i nga tikanga āhuahanga. The obstacles are shown in gray and we recommend starting at any end vertex. If there is more than one adjacent terminating vertex, you should choose one that allows you to continue using the second vertex. It depends on the Angle. Ko te tikanga matua i konei ko te hātepe-kaha algorithm e tatau ana i nga ope e mahi ana i runga i nga raarangi hou ka neke tonu ki te waahi taurite (ko te nui me te ahunga o nga kaha e pa ana ki nga waea i nga peka peka e piri ana). Mena ko te Koki i waenga i nga waahanga raina e hono ana ki te pito (whakamutu, taapiri ranei) he iti ake i te 120 nga nekehanga, ka taea te taapiri i tetahi peka, ka taea ai te whakamahi i te algorithm miihini hei arotau i te tuunga o te puri. It’s worth noting that simply sorting all angles in descending order and adding new vertices in that order doesn’t work, and the result is worse. After adding a new node, you should check the minimum of a subnet consisting of four pins:

1. If a vertex is added to the vicinity of another newly added vertex, check for the smallest four-pin network.

2. If the four-pin network is not minimal, select a pair of “diagonal” (belonging to the quadrilateral diagonal) endpoints or virtual terminal nodes (virtual terminal nodes – wire bends).

3. The line segment that connects the endpoint (virtual endpoint) to the nearest new vertex is replaced by the line segment that connects the endpoint (virtual endpoint) to the distant new vertex.

4. Use mechanical algorithms to optimize vertex positions.

This method does not guarantee to build the smallest network, but compared with other methods, it can achieve the smallest network length without grazing. Ka taea hoki nga waahanga e aukatihia ai nga hononga mutunga, a, ko te maha o nga tohu mutunga ka taea te poka noa.

Flexible wiring at any Angle has some other interesting advantages. For example, if you can automatically move many objects with the help of automatic real-time wire shape recalculation, you can create parallel serpentine lines. This cabling method makes better use of space, minimizes the number of iterations, and allows for flexible use of tolerances. If there are two serpentine lines interlaced with each other, the automatic cabler will reduce the length of one or both, depending on rule priority.

Consider the wiring of BGA components. In the traditional peripheral-to-center approach, the number of channels to the periphery is reduced by 8 with each successive layer (due to a reduction in perimeter). For example, a 28x28mm component with 784 pins requires 10 layers. Ko etahi o nga paparanga o te hoahoa kua puta i nga waea waea. Ko te Whakaaturanga 16 e whakaatu ana i te hauwha o te BGA. I te wa ano, ka whakamahi ana i te tikanga waea waea “pokapū ki te parekura”, ko te maha o nga waahana e hiahiatia ana kia puta ki te taha kaore e rereke mai i tetahi papanga ki tetahi papanga. Ma tenei ka tino heke te maha o nga papa. Mo te rahinga o te waahanga 28x28mm, e 7 nga papa kua rawaka. Mo nga waahanga nui ake, he toa-toa. Figure 17 shows a quarter of the BGA. An example of BGA wiring is shown. When using the “center to periphery” cabling approach, we can complete the cabling of all networks. Ka taea e tenei tauera te koki tauera koki takirua. Traditional automatic cablers cannot route this example. Shows an example of a real PCB where the engineer reduced the number of signal layers from 6 to 4 (compared to the specification). In addition, it took engineers only half a day to complete the wiring of the PCB.