如何避免PCB設計問題?

工業、科學和醫療射頻(ISM-RF)產品的眾多應用案例表明, 印刷電路板 這些產品的佈局很容易出現各種缺陷。人們經常會發現,同一個IC安裝在兩塊不同的電路板上,性能指標會有明顯的不同。 Variations in operating conditions, harmonic radiation, anti-interference ability, and start-up time can explain the importance of circuit board layout in a successful design.

This article lists the various design omissions, discusses the causes of each failure, and provides suggestions on how to avoid these design defects. 本文以fr-4電介質、0.0625in厚雙層PCB為例,電路板接地。 Operating in different frequency bands between 315MHz and 915MHz, Tx and Rx power between -120dbm and +13dBm.

印刷電路板

電感方向

當兩個電感(甚至兩條PCB線)靠近時,就會產生互感。 The magnetic field generated by the current in the first circuit excites the current in the second circuit (Figure 1). This process is similar to the interaction between the primary and secondary coils of a transformer. When two currents interact through a magnetic field, the voltage generated is determined by mutual inductance LM:

其中,YB 是注入電路 B 的誤差電壓,IA 是作用在電路 A 上的電流 1。 LM 對電路間距、電感迴路面積(即磁通量)和迴路方向非常敏感。 Therefore, the best balance between compact circuit layout and reduced coupling is the correct alignment of all inductors in the direction.

FIG. 1. It can be seen from magnetic field lines that mutual inductance is related to inductance alignment direction

The direction of circuit B is adjusted so that its current loop is parallel to the magnetic field line of circuit A. 為此,請盡可能相互垂直,參考低功耗 FSK 超外差接收器評估 (EV) 板 (MAX7042EVKIT) 的電路佈局(圖 2)。 The three inductors on the board (L3, L1 and L2) are very close to each other, and their orientation at 0°, 45° and 90° helps to reduce mutual inductance.

圖 2. 顯示了兩種不同的 PCB 佈局,其中一種的元件排列方向錯誤(L1 和 L3),而另一種更合適。

綜上所述,應遵循以下原則:

電感間距應盡可能遠。

電感器以直角排列,以最大限度地減少電感器之間的串擾。

引導聯軸器

正如電感器的方向影響磁耦合一樣,如果引線彼此太靠近,耦合也會影響磁耦合。 這種佈局問題也產生了所謂的互感。 射頻電路最關心的問題之一是系統敏感部分的佈線,如輸入匹配網絡、接收機的諧振通道、發射機的天線匹配網絡等。

返回電流路徑應盡可能靠近主電流路徑,以最小化輻射磁場。 This arrangement helps to reduce the current loop area. 返回電流的理想低電阻路徑通常是引線下方的接地區域——有效地將迴路面積限制在電介質厚度乘以引線長度的區域。 但是,如果接地區域被分割,環路面積會增加(圖 3)。 For leads passing through the split region, the return current will be forced through the high resistance path, greatly increasing the current loop area. This arrangement also makes circuit leads more susceptible to mutual inductance.

圖 3. 完整的大面積接地有助於提高系統性能

對於實際電感器,引線方向對磁場耦合也有顯著影響。 如果敏感電路的引線必須彼此靠近,最好將引線垂直對齊以減少耦合(圖 4)。 If vertical alignment is not possible, consider using a guard line. 保護線設計請參考下面的接地和填充處理部分。

Figure 4. Similar to Figure 1, shows the possible coupling of magnetic field lines.

To sum up, the following principles should be followed when the plate is distributed:

Complete grounding should be ensured below the lead.

敏感引線應垂直排列。

If the leads must be arranged in parallel, ensure adequate spacing or use guard wires.

Grounding via

RF 電路佈局的主要問題通常是電路的次優特性阻抗,包括電路元件及其互連。 帶有薄銅塗層的引線相當於電感線,並與附近的其他引線形成分佈電容。 引線在穿過孔時還表現出電感和電容特性。

The through-hole capacitance mainly comes from the capacitance formed between the copper cladding on the side of the through-hole pad and the copper cladding on the ground, separated by a fairly small ring. Another influence comes from the cylinder of the metal perforation itself. 寄生電容的影響一般很小,通常只會引起高速數字信號的邊緣變化(本文不討論)。

通孔的最大影響是相應互連方式引起的寄生電感。 Because most metal perforations in RF PCB designs are the same size as lumped components, the effect of electrical perforations can be estimated using a simple formula (FIG. 5) :

Where, LVIA is lumped inductance through hole; H is the height of the throughhole, in inches; D 是通孔的直徑,以英寸 2 為單位。

如何避免印製板PCB佈局中的各種缺陷

FIG. 5. PCB cross section used to estimate parasitic effects on through-hole structures

The parasitic inductance often has a great influence on the connection of bypass capacitors. 理想的旁路電容器在供電區和地層之間提供高頻短路,但非理想的通孔會影響地層和供電區之間的低靈敏度路徑。 A typical PCB through hole (d = 10 mil, h = 62.5 mil) is approximately equivalent to a 1.34nH inductor. 鑑於 ISM-RF 產品的特定工作頻率,通孔會對敏感電路產生不利影響,例如諧振通道電路、濾波器和匹配網絡。

如果敏感電路共享孔,則會出現其他問題,例如 π 型網絡的兩個臂。 例如,通過放置一個等效於集總電感的理想孔,等效原理圖與原始電路設計(圖 6)有很大不同。 As with crosstalk of common current path 3, resulting in increased mutual inductance, increased crosstalk and feed-through.

How to avoid PCB design problems

圖 6. 理想與非理想架構,電路中存在潛在的“信號路徑”。

To sum up, circuit layout should follow the following principles:

Ensure modeling of through-hole inductance in sensitive areas.

The filter or matching network uses independent through-holes.

Note that a thinner PCB copper-clad will reduce the effect of parasitic inductance through the hole.

引線長度

Maxim ISM-RF 產品數據通常建議使用盡可能短的高頻輸入和輸出引線,以最大限度地減少損耗和輻射。 另一方面,這種損耗通常是由不理想的寄生參數引起的,因此寄生電感和寄生電容都會影響電路佈局,使用盡可能短的引線有助於降低寄生參數。 Typically, a 10 mil wide PCB lead with a distance of 0.0625in… From a FR4 board produces an inductance of approximately 19nH/in and a distributed capacitance of approximately 1pF/in. 對於具有 20nH 電感和 3pF 電容的 LAN/混頻器電路,當電路和元件佈局非常緊湊時,有效元件值會受到很大影響。

Ipc-d-317a4 in ‘Institute for Printed Circuits’ provides an industry standard equation for estimating various impedance parameters of microstrip PCB. 該文檔在2003年被IPC-2251 5取代,它為各種PCB引線提供了更準確的計算方法。 Online calculators are available from a variety of sources, most of which are based on equations provided by IPC-2251. The Electromagnetic Compatibility Lab at Missouri Institute of Technology provides a very practical method for calculating PCB lead impedance 6.

The accepted criteria for calculating the impedance of microstrip lines are:

式中,εr為電介質的介電常數,h為引線距地層的高度,W為引線寬度,T為引線厚度(圖7)。 當w/h在0.1到2.0之間,εr在1到15之間時,這個公式的計算結果是相當準確的。

Figure 7. This figure is a PCB cross section (similar to Figure 5) and represents the structure used to calculate the impedance of a microstrip line.

In order to evaluate the effect of lead length, it is more practical to determine the detuning effect of ideal circuit by lead parasitical parameters. 在本例中,我們討論雜散電容和電感。 The standard equation of characteristic capacitance for microstrip lines is:

類似地,特徵電感可以通過使用上面的等式從等式計算出來:

例如,假設 PCB 厚度為 0.0625 英寸。 (h = 62.5 mil),1 盎司鍍銅鉛 (t = 1.35 mil),0.01 英寸。 (w = 10 mil) 和一塊 FR-4 板。 請注意,FR-4 的 ε R 通常為 4.35 法拉/米 (F/m),但范圍可以從 4.0F/m 到 4.7F/m。 本例中計算的特徵值為 Z0 = 134 ω,C0 = 1.04pF/in,L0 = 18.7nH/in。

對於 AN ISM-RF 設計,板上引線的 12.7 毫米(0.5 英寸)佈局長度會產生大約 0.5pF 和 9.3nH 的寄生參數(圖 8)。 此級別的寄生參數對接收器諧振通道的影響(LC 乘積的變化)可能會導致 315MHz ±2% 或 433.92mhz ±3.5% 的變化。 由於引線寄生效應引起的附加電容和電感,315MHz振盪頻率峰值達到312.17mhz,433.92mhz振盪頻率峰值達到426.6mhz。

Another example is the resonant channel of Maxim’s superheterodyne receiver (MAX7042). The recommended components are 1.2pF and 30nH at 315MHz; At 433.92MHz, it is 0pF and 16nH. 用下式計算諧振電路的振盪頻率:

板的諧振電路的評估應包括封裝和佈局的寄生效應,計算7.3MHz諧振頻率時的寄生參數分別為7.5PF和315PF。 請注意,LC 乘積代表集總電容。

綜上所述,必須遵循以下原則:

保持領先盡可能短。

將關鍵電路盡可能靠近設備放置。

關鍵元件根據實際佈局寄生進行補償。

接地和填充處理

The grounding or power layer defines a common reference voltage that supplies power to all parts of the system through a low resistance path. 以這種方式均衡所有電場會產生良好的屏蔽機制。

直流電總是傾向於沿著低電阻路徑流動。 同樣,高頻電流優先流過電阻最低的路徑。 So, for a standard PCB microstrip line above the formation, the return current tries to flow into the ground region directly below the lead. As described in the lead coupling section above, the cut ground area introduces various noises that increase crosstalk either through magnetic field coupling or by converging currents (Figure 9).

如何避免印製板PCB佈局中的各種缺陷

FIG. 9. Keep the formation intact as much as possible, otherwise the return current will cause crosstalk.

Filled ground, also known as guard lines, is commonly used in circuits where continuous grounding is difficult to lay or where shielding sensitive circuits is required (FIG. 10). The shielding effect can be increased by placing grounding holes (i.e. hole arrays) at both ends of the lead or along the lead. 8. 不要將保護線與設計用於提供返回電流路徑的引線混合在一起。 這種佈置會引入串擾。

如何避免印製板PCB佈局中的各種缺陷

無花果。 10. RF 系統設計應避免浮動銅包線,特別是在需要銅護套時。

覆銅區不接地(浮地)或僅一端接地,限制了其有效性。 In some cases, it can cause unwanted effects by forming parasitic capacitance that changes the impedance of the surrounding wiring or creates a “latent” path between circuits. 簡而言之,如果在電路板上鋪設一塊覆銅(非電路信號線),以確保電鍍厚度一致。 應避免覆銅區域,因為它們會影響電路設計。

最後,一定要考慮天線附近任何接地區域的影響。 任何單極天線都會有接地區域、佈線和孔作為系統平衡的一部分,非理想的平衡佈線會影響天線(輻射模板)的輻射效率和方向。 Therefore, the ground area should not be placed directly below the monopole PCB lead antenna.

綜上所述,應遵循以下原則:

盡可能提供連續的低電阻接地區。

灌裝線兩端接地,盡量採用通孔陣列。

不要在射頻電路附近浮動覆銅線,不要在射頻電路周圍敷銅。

如果電路板包含多層,最好在信號線從一側穿到另一側時鋪設接地通孔。

晶振電容過大

寄生電容會導致晶振頻率偏離目標值 9。 因此,應遵循一些一般準則以減少晶體引腳、焊盤、導線或與 RF 設備連接的雜散電容。

應遵循以下原則:

晶體和射頻設備之間的連接應盡可能短。

盡可能使佈線彼此遠離。

如果分流寄生電容太大,請去除晶體下方的接地區域。

平面佈線電感

Planar wiring or PCB spiral inductors are not recommended. Typical PCB manufacturing processes have certain inaccuracies, such as width and space tolerances, which greatly affect the accuracy of component values. 因此,大多數受控和高 Q 電感器都是繞線式的。 其次,可以選擇多層陶瓷電感,多層貼片電容廠家也提供這種產品。 儘管如此,一些設計人員還是會在必要時選擇螺旋電感。 The standard formula for calculating planar spiral inductance is usually Wheeler’s formula 10:

式中,a為線圈的平均半徑,單位為英寸; N是匝數; C 是線圈芯的寬度(路由器 – rinner),以英寸為單位。 當線圈c“0.2a 11”時,計算方法的精度在5%以內。

可以使用方形、六邊形或其他形狀的單層螺旋電感器。 可以找到非常好的近似值來模擬集成電路晶片上的平面電感。 為了達到這個目的,對標準的Wheeler公式進行了修改,得到了一種適用於小尺寸和正方形尺寸12的平面電感估計方法。

其中,ρ為填充率:; N 是圈數,dAVG 是平均直徑:。 對於方形螺旋,K1 = 2.36,K2 = 2.75。

避免使用此類電感的原因有很多,由於空間限制,這通常會導致電感值降低。 The main reasons for avoiding planar inductors are limited geometry and poor control of critical dimensions, which makes it impossible to predict inductor values. 此外,實際電感值在 PCB 生產過程中很難控制,而且電感也容易將噪聲耦合到電路的其他部分。