如何避免PCB设计问题?

工业、科学和医疗射频(ISM-RF)产品的众多应用案例表明, 印刷电路板 这些产品的布局很容易出现各种缺陷。人们经常会发现,同一个IC安装在两块不同的电路板上,性能指标会有明显的不同。 Variations in operating conditions, harmonic radiation, anti-interference ability, and start-up time can explain the importance of circuit board layout in a successful design.

This article lists the various design omissions, discusses the causes of each failure, and provides suggestions on how to avoid these design defects. 本文以fr-4电介质、0.0625in厚双层PCB为例,电路板接地。 Operating in different frequency bands between 315MHz and 915MHz, Tx and Rx power between -120dbm and +13dBm.

印刷电路板

电感方向

当两个电感(甚至两条PCB线)靠近时,就会产生互感。 The magnetic field generated by the current in the first circuit excites the current in the second circuit (Figure 1). This process is similar to the interaction between the primary and secondary coils of a transformer. When two currents interact through a magnetic field, the voltage generated is determined by mutual inductance LM:

其中,YB 是注入电路 B 的误差电压,IA 是作用在电路 A 上的电流 1。 LM 对电路间距、电感回路面积(即磁通量)和回路方向非常敏感。 Therefore, the best balance between compact circuit layout and reduced coupling is the correct alignment of all inductors in the direction.

FIG. 1. It can be seen from magnetic field lines that mutual inductance is related to inductance alignment direction

The direction of circuit B is adjusted so that its current loop is parallel to the magnetic field line of circuit A. 为此,请尽可能相互垂直,参考低功耗 FSK 超外差接收器评估 (EV) 板 (MAX7042EVKIT) 的电路布局(图 2)。 The three inductors on the board (L3, L1 and L2) are very close to each other, and their orientation at 0°, 45° and 90° helps to reduce mutual inductance.

图 2. 显示了两种不同的 PCB 布局,其中一种的元件排列方向错误(L1 和 L3),而另一种更合适。

综上所述,应遵循以下原则:

电感间距应尽可能远。

电感器以直角排列,以最大限度地减少电感器之间的串扰。

引导联轴器

正如电感器的方向影响磁耦合一样,如果引线彼此太靠近,耦合也会影响磁耦合。 这种布局问题也产生了所谓的互感。 射频电路最关心的问题之一是系统敏感部分的布线,如输入匹配网络、接收机的谐振通道、发射机的天线匹配网络等。

返回电流路径应尽可能靠近主电流路径,以最小化辐射磁场。 This arrangement helps to reduce the current loop area. 返回电流的理想低电阻路径通常是引线下方的接地区域——有效地将回路面积限制在电介质厚度乘以引线长度的区域。 但是,如果接地区域被分割,环路面积会增加(图 3)。 For leads passing through the split region, the return current will be forced through the high resistance path, greatly increasing the current loop area. This arrangement also makes circuit leads more susceptible to mutual inductance.

图 3. 完整的大面积接地有助于提高系统性能

对于实际电感器,引线方向对磁场耦合也有显着影响。 如果敏感电路的引线必须彼此靠近,最好将引线垂直对齐以减少耦合(图 4)。 If vertical alignment is not possible, consider using a guard line. 保护线设计请参考下面的接地和填充处理部分。

Figure 4. Similar to Figure 1, shows the possible coupling of magnetic field lines.

To sum up, the following principles should be followed when the plate is distributed:

Complete grounding should be ensured below the lead.

敏感引线应垂直排列。

If the leads must be arranged in parallel, ensure adequate spacing or use guard wires.

Grounding via

RF 电路布局的主要问题通常是电路的次优特性阻抗,包括电路元件及其互连。 带有薄铜涂层的引线相当于电感线,并与附近的其他引线形成分布电容。 引线在穿过孔时还表现出电感和电容特性。

The through-hole capacitance mainly comes from the capacitance formed between the copper cladding on the side of the through-hole pad and the copper cladding on the ground, separated by a fairly small ring. Another influence comes from the cylinder of the metal perforation itself. 寄生电容的影响一般很小,通常只会引起高速数字信号的边缘变化(本文不讨论)。

通孔的最大影响是相应互连方式引起的寄生电感。 Because most metal perforations in RF PCB designs are the same size as lumped components, the effect of electrical perforations can be estimated using a simple formula (FIG. 5) :

Where, LVIA is lumped inductance through hole; H is the height of the throughhole, in inches; D 是通孔的直径,以英寸 2 为单位。

如何避免印制板PCB布局中的各种缺陷

无花果。 5. PCB 横截面用于估计对通孔结构的寄生效应

The parasitic inductance often has a great influence on the connection of bypass capacitors. 理想的旁路电容器在供电区和地层之间提供高频短路,但非理想的通孔会影响地层和供电区之间的低灵敏度路径。 A typical PCB through hole (d = 10 mil, h = 62.5 mil) is approximately equivalent to a 1.34nH inductor. 鉴于 ISM-RF 产品的特定工作频率,通孔会对敏感电路产生不利影响,例如谐振通道电路、滤波器和匹配网络。

如果敏感电路共享孔,则会出现其他问题,例如 π 型网络的两个臂。 例如,通过放置一个等效于集总电感的理想孔,等效原理图与原始电路设计(图 6)有很大不同。 As with crosstalk of common current path 3, resulting in increased mutual inductance, increased crosstalk and feed-through.

How to avoid PCB design problems

图 6. 理想与非理想架构,电路中存在潜在的“信号路径”。

To sum up, circuit layout should follow the following principles:

Ensure modeling of through-hole inductance in sensitive areas.

The filter or matching network uses independent through-holes.

Note that a thinner PCB copper-clad will reduce the effect of parasitic inductance through the hole.

引线长度

Maxim ISM-RF 产品数据通常建议使用尽可能短的高频输入和输出引线,以最大限度地减少损耗和辐射。 另一方面,这种损耗通常是由不理想的寄生参数引起的,因此寄生电感和寄生电容都会影响电路布局,使用尽可能短的引线有助于降低寄生参数。 Typically, a 10 mil wide PCB lead with a distance of 0.0625in… From a FR4 board produces an inductance of approximately 19nH/in and a distributed capacitance of approximately 1pF/in. 对于具有20nH电感和3pF电容的LAN/混频器电路,当电路和元件布局非常紧凑时,有效元件值会受到很大影响。

Ipc-d-317a4 in ‘Institute for Printed Circuits’ provides an industry standard equation for estimating various impedance parameters of microstrip PCB. 该文档在2003年被IPC-2251 5取代,它为各种PCB引线提供了更准确的计算方法。 Online calculators are available from a variety of sources, most of which are based on equations provided by IPC-2251. The Electromagnetic Compatibility Lab at Missouri Institute of Technology provides a very practical method for calculating PCB lead impedance 6.

The accepted criteria for calculating the impedance of microstrip lines are:

式中,εr为电介质的介电常数,h为引线距地层的高度,W为引线宽度,T为引线厚度(图7)。 当w/h在0.1到2.0之间,εr在1到15之间时,这个公式的计算结果是相当准确的。

Figure 7. This figure is a PCB cross section (similar to Figure 5) and represents the structure used to calculate the impedance of a microstrip line.

In order to evaluate the effect of lead length, it is more practical to determine the detuning effect of ideal circuit by lead parasitical parameters. 在本例中,我们讨论杂散电容和电感。 The standard equation of characteristic capacitance for microstrip lines is:

类似地,特征电感可以通过使用上面的等式从等式计算出来:

例如,假设 PCB 厚度为 0.0625 英寸。 (h = 62.5 mil),1 盎司镀铜铅 (t = 1.35 mil),0.01 英寸。 (w = 10 mil) 和一块 FR-4 板。 请注意,FR-4 的 ε R 通常为 4.35 法拉/米 (F/m),但范围可以从 4.0F/m 到 4.7F/m。 本例中计算的特征值为 Z0 = 134 ω,C0 = 1.04pF/in,L0 = 18.7nH/in。

对于 AN ISM-RF 设计,板上引线的 12.7 毫米(0.5 英寸)布局长度会产生大约 0.5pF 和 9.3nH 的寄生参数(图 8)。 此级别的寄生参数对接收器谐振通道的影响(LC 乘积的变化)可能会导致 315MHz ±2% 或 433.92mhz ±3.5% 的变化。 由于引线寄生效应引起的附加电容和电感,315MHz振荡频率峰值达到312.17mhz,433.92mhz振荡频率峰值达到426.6mhz。

Another example is the resonant channel of Maxim’s superheterodyne receiver (MAX7042). The recommended components are 1.2pF and 30nH at 315MHz; At 433.92MHz, it is 0pF and 16nH. 用下式计算谐振电路的振荡频率:

板的谐振电路的评估应包括封装和布局的寄生效应,计算7.3MHz谐振频率时的寄生参数分别为7.5PF和315PF。 请注意,LC 乘积代表集总电容。

综上所述,必须遵循以下原则:

保持领先尽可能短。

将关键电路尽可能靠近设备放置。

关键元件根据实际布局寄生进行补偿。

接地和填充处理

The grounding or power layer defines a common reference voltage that supplies power to all parts of the system through a low resistance path. 以这种方式均衡所有电场会产生良好的屏蔽机制。

直流电总是倾向于沿着低电阻路径流动。 同样,高频电流优先流过电阻最低的路径。 So, for a standard PCB microstrip line above the formation, the return current tries to flow into the ground region directly below the lead. As described in the lead coupling section above, the cut ground area introduces various noises that increase crosstalk either through magnetic field coupling or by converging currents (Figure 9).

如何避免印制板PCB布局中的各种缺陷

FIG. 9. Keep the formation intact as much as possible, otherwise the return current will cause crosstalk.

Filled ground, also known as guard lines, is commonly used in circuits where continuous grounding is difficult to lay or where shielding sensitive circuits is required (FIG. 10). The shielding effect can be increased by placing grounding holes (i.e. hole arrays) at both ends of the lead or along the lead. 8. 不要将保护线与设计用于提供返回电流路径的引线混合在一起。 这种布置会引入串扰。

如何避免印制板PCB布局中的各种缺陷

无花果。 10. RF 系统设计应避免浮动铜包线,特别是在需要铜护套时。

覆铜区不接地(浮地)或仅一端​​接地,限制了其有效性。 In some cases, it can cause unwanted effects by forming parasitic capacitance that changes the impedance of the surrounding wiring or creates a “latent” path between circuits. 简而言之,如果在电路板上铺设一块覆铜(非电路信号线),以确保电镀厚度一致。 应避免覆铜区域,因为它们会影响电路设计。

最后,一定要考虑天线附近任何接地区域的影响。 任何单极天线都会有接地区域、布线和孔作为系统平衡的一部分,非理想的平衡布线会影响天线(辐射模板)的辐射效率和方向。 Therefore, the ground area should not be placed directly below the monopole PCB lead antenna.

综上所述,应遵循以下原则:

尽可能提供连续的低电阻接地区。

灌装线两端接地,尽量采用通孔阵列。

不要在射频电路附近浮动覆铜线,不要在射频电路周围敷铜。

如果电路板包含多层,最好在信号线从一侧穿到另一侧时铺设接地通孔。

晶振电容过大

寄生电容会导致晶振频率偏离目标值 9。 因此,应遵循一些一般准则以减少晶体引脚、焊盘、导线或与 RF 设备连接的杂散电容。

应遵循以下原则:

晶体和射频设备之间的连接应尽可能短。

尽可能使布线彼此远离。

如果分流寄生电容太大,请去除晶体下方的接地区域。

平面布线电感

Planar wiring or PCB spiral inductors are not recommended. Typical PCB manufacturing processes have certain inaccuracies, such as width and space tolerances, which greatly affect the accuracy of component values. 因此,大多数受控和高 Q 电感器都是绕线式的。 其次,可以选择多层陶瓷电感,多层贴片电容厂家也提供这种产品。 尽管如此,一些设计人员还是会在必要时选择螺旋电感。 The standard formula for calculating planar spiral inductance is usually Wheeler’s formula 10:

式中,a为线圈的平均半径,单位为英寸; N是匝数; C 是线圈芯的宽度(路由器 – rinner),以英寸为单位。 当线圈c“0.2a 11”时,计算方法的精度在5%以内。

可以使用方形、六边形或其他形状的单层螺旋电感器。 可以找到非常好的近似值来模拟集成电路晶片上的平面电感。 为了达到这个目的,对标准的Wheeler公式进行了修改,得到了一种适用于小尺寸和正方形尺寸12的平面电感估计方法。

其中,ρ为填充率:; N 是圈数,dAVG 是平均直径:。 对于方形螺旋,K1 = 2.36,K2 = 2.75。

避免使用此类电感的原因有很多,由于空间限制,这通常会导致电感值降低。 The main reasons for avoiding planar inductors are limited geometry and poor control of critical dimensions, which makes it impossible to predict inductor values. 此外,实际电感值在 PCB 生产过程中很难控制,而且电感也容易将噪声耦合到电路的其他部分。